# Print output for @column tags ?> Flow - Android SDK | Android Developers

Most visited

Recently visited

Flow

public final class Flow
extends Object

java.lang.Object
   ↳ java.util.concurrent.Flow


Interrelated interfaces and static methods for establishing flow-controlled components in which Publisher produce items consumed by one or more Subscriber, each managed by a Subscription.

These interfaces correspond to the reactive-streams specification. They apply in both concurrent and distributed asynchronous settings: All (seven) methods are defined in void "one-way" message style. Communication relies on a simple form of flow control (method Subscription#request) that can be used to avoid resource management problems that may otherwise occur in "push" based systems.

Examples. A Publisher usually defines its own Subscription implementation; constructing one in method subscribe and issuing it to the calling Subscriber. It publishes items to the subscriber asynchronously, normally using an Executor. For example, here is a very simple publisher that only issues (when requested) a single TRUE item to a single subscriber. Because the subscriber receives only a single item, this class does not use buffering and ordering control required in most implementations.

 class OneShotPublisher implements Publisher<Boolean> {
   private final ExecutorService executor = ForkJoinPool.commonPool(); // daemon-based
   private boolean subscribed; // true after first subscribe
   public synchronized void subscribe(Subscriber<? super Boolean> subscriber) {
     if (subscribed)
       subscriber.onError(new IllegalStateException()); // only one allowed
     else {
       subscribed = true;
       subscriber.onSubscribe(new OneShotSubscription(subscriber, executor));
     }
   }
   static class OneShotSubscription implements Subscription {
     private final Subscriber<? super Boolean> subscriber;
     private final ExecutorService executor;
     private Future<?> future; // to allow cancellation
     private boolean completed;
     OneShotSubscription(Subscriber<? super Boolean> subscriber,
                         ExecutorService executor) {
       this.subscriber = subscriber;
       this.executor = executor;
     }
     public synchronized void request(long n) {
       if (n != 0 && !completed) {
         completed = true;
         if (n < 0) {
           IllegalArgumentException ex = new IllegalArgumentException();
           executor.execute(() -> subscriber.onError(ex));
         } else {
           future = executor.submit(() -> {
             subscriber.onNext(Boolean.TRUE);
             subscriber.onComplete();
           });
         }
       }
     }
     public synchronized void cancel() {
       completed = true;
       if (future != null) future.cancel(false);
     }
   }
 }

A Subscriber arranges that items be requested and processed. Items (invocations of Subscriber#onNext) are not issued unless requested, but multiple items may be requested. Many Subscriber implementations can arrange this in the style of the following example, where a buffer size of 1 single-steps, and larger sizes usually allow for more efficient overlapped processing with less communication; for example with a value of 64, this keeps total outstanding requests between 32 and 64. Because Subscriber method invocations for a given Subscription are strictly ordered, there is no need for these methods to use locks or volatiles unless a Subscriber maintains multiple Subscriptions (in which case it is better to instead define multiple Subscribers, each with its own Subscription).

 class SampleSubscriber<T> implements Subscriber<T> {
   final Consumer<? super T> consumer;
   Subscription subscription;
   final long bufferSize;
   long count;
   SampleSubscriber(long bufferSize, Consumer<? super T> consumer) {
     this.bufferSize = bufferSize;
     this.consumer = consumer;
   }
   public void onSubscribe(Subscription subscription) {
     long initialRequestSize = bufferSize;
     count = bufferSize - bufferSize / 2; // re-request when half consumed
     (this.subscription = subscription).request(initialRequestSize);
   }
   public void onNext(T item) {
     if (--count <= 0)
       subscription.request(count = bufferSize - bufferSize / 2);
     consumer.accept(item);
   }
   public void onError(Throwable ex) { ex.printStackTrace(); }
   public void onComplete() {}
 }

The default value of defaultBufferSize() may provide a useful starting point for choosing request sizes and capacities in Flow components based on expected rates, resources, and usages. Or, when flow control is never needed, a subscriber may initially request an effectively unbounded number of items, as in:

 class UnboundedSubscriber<T> implements Subscriber<T> {
   public void onSubscribe(Subscription subscription) {
     subscription.request(Long.MAX_VALUE); // effectively unbounded
   }
   public void onNext(T item) { use(item); }
   public void onError(Throwable ex) { ex.printStackTrace(); }
   public void onComplete() {}
   void use(T item) { ... }
 }

Summary

Nested classes

interface Flow.Processor<T, R>

A component that acts as both a Subscriber and Publisher. 

interface Flow.Publisher<T>

A producer of items (and related control messages) received by Subscribers. 

interface Flow.Subscriber<T>

A receiver of messages. 

interface Flow.Subscription

Message control linking a Publisher and Subscriber

Public methods

static int defaultBufferSize()

Returns a default value for Publisher or Subscriber buffering, that may be used in the absence of other constraints.

Inherited methods

Public methods

defaultBufferSize

public static int defaultBufferSize ()

Returns a default value for Publisher or Subscriber buffering, that may be used in the absence of other constraints.

Implementation Note:
  • The current value returned is 256.
Returns
int the buffer size value